graph TD
A[内存空间 16KB] -->|分割| B[块 1 8KB]
A -->|分割| C[块 2 8KB]
B -->|分割| D[块 3 4KB]
B -->|分割| E[块 4 4KB]
C -->|分割| F[块 5 4KB]
C -->|分割| G[块 6 4KB]
style A fill:#f9f,stroke:#333,stroke-width:2px
style B fill:#ccf,stroke:#333,stroke-width:2px
style C fill:#ccf,stroke:#333,stroke-width:2px
style D fill:#cfc,stroke:#333,stroke-width:2px
style E fill:#cfc,stroke:#333,stroke-width:2px
style F fill:#290,stroke:#333,stroke-width:2px
style G fill:#290,stroke:#333,stroke-width:2px
由此一来,基于 Buddy System 的分配模式便可确保每时每刻的空闲块都是最大的,这样可以避免外部碎片;同时基于分配请求来寻找空闲块分配的操作又尽可能减小了内部碎片的大小。尽量避免了较大内存碎片的产生
/* The following two are defined in mm.c and filled by mmparse.c. */ externpaddr_t physmem_map[N_PHYS_MEM_POOLS][2]; externint physmem_map_num;
/* All the following symbols are only used locally in the mm module. */
/* `struct page` is the metadata of one physical 4k page. */ structpage { /* Free list */ structlist_headnode; /* Whether the correspond physical page is free now. */ int allocated; /* The order of the memory chunck that this page belongs to. */ int order; /* Used for ChCore slab allocator. */ void *slab; /* The physical memory pool this page belongs to */ structphys_mem_pool *pool; };
/* * Supported Order: [0, BUDDY_MAX_ORDER). * The max allocated size (continous physical memory size) is * 2^(BUDDY_MAX_ORDER - 1) * 4K. * Given BUDDY_MAX_ORDER is 14, the max allocated chunk is 32M. */ #define BUDDY_PAGE_SIZE (0x1000) #define BUDDY_MAX_ORDER (14)
/* One page size is 4K, so the order is 12. */ #define BUDDY_PAGE_SIZE_ORDER (12)
/* Each physical memory chunk can be represented by one physical memory pool. */ structphys_mem_pool { /* * The start virtual address (for used in kernel) of * this physical memory pool. */ vaddr_t pool_start_addr; unsignedlong pool_mem_size;
/* * The start virtual address (for used in kernel) of * the metadata area of this pool. */ structpage *page_metadata;
/* One lock for one pool. */ structlockbuddy_lock;
/* The free list of different free-memory-chunk orders. */ structfree_listfree_lists[BUDDY_MAX_ORDER];
/* * This field is only used in ChCore unit test. * The number of (4k) physical pages in this physical memory pool. */ unsignedlong pool_phys_page_num; };
/* Disjoint physical memory can be represented by several phys_mem_pools. */ externstructphys_mem_poolglobal_mem[N_PHYS_MEM_POOLS];
/* * The layout of a phys_mem_pool: * | page_metadata are (an array of struct page) | alignment pad | usable memory * | * * The usable memory: [pool_start_addr, pool_start_addr + pool_mem_size). */ voidinit_buddy(struct phys_mem_pool *pool, struct page *start_page, vaddr_t start_addr, unsignedlong page_num) { int order; int page_idx; structpage *page;
BUG_ON(lock_init(&pool->buddy_lock) != 0);
/* Init the physical memory pool. */ pool->pool_start_addr = start_addr; pool->page_metadata = start_page; pool->pool_mem_size = page_num * BUDDY_PAGE_SIZE; /* This field is for unit test only. */ pool->pool_phys_page_num = page_num;
/* Init the free lists */ for (order = 0; order < BUDDY_MAX_ORDER; ++order) { pool->free_lists[order].nr_free = 0; init_list_head(&(pool->free_lists[order].free_list)); }
/* Get the address of the chunk. */ chunk_addr = (vaddr_t)page_to_virt(chunk); order = chunk->order; /* * Calculate the address of the buddy chunk according to the address * relationship between buddies. */ buddy_chunk_addr = chunk_addr ^ (1UL << (order + BUDDY_PAGE_SIZE_ORDER));
/* Check whether the buddy_chunk_addr belongs to pool. */ if ((buddy_chunk_addr < pool->pool_start_addr) || ((buddy_chunk_addr + (1 << order) * BUDDY_PAGE_SIZE) > (pool->pool_start_addr + pool->pool_mem_size))) { returnNULL; }
return virt_to_page((void *)buddy_chunk_addr); }
解析
由伙伴块的定义可知,互为伙伴的两个块,它们的内存地址仅有一位不同,且该位由 order 决定
于是这块代码的核心便在于如何由位运算得到伙伴块的地址,首先,我们有:
1 2
块A的伙伴是块B = 块A的地址 ^ size 块B的伙伴是块A = 块B的地址 ^ size
于是我们可以由 order 和 BUDDY_PAGE_SIZE_ORDER(这里是 12,因为一个页的大小是 4KB)得到 size 的大小:
struct page *buddy_get_pages(struct phys_mem_pool *pool, int order) { int cur_order; structlist_head *free_list; structpage *page =NULL;
if (unlikely(order >= BUDDY_MAX_ORDER)) { kwarn("ChCore does not support allocating such too large " "contious physical memory\n"); returnNULL; }
lock(&pool->buddy_lock);
/* Search a chunk (with just enough size) in the free lists. */ for (cur_order = order; cur_order < BUDDY_MAX_ORDER; ++cur_order) { free_list = &(pool->free_lists[cur_order].free_list); if (!list_empty(free_list)) { /* Get a free memory chunck from the free list */ page = list_entry(free_list->next, struct page, node); list_del(&page->node); pool->free_lists[cur_order].nr_free -= 1; page->allocated = 1; break; } }
if (unlikely(page == NULL)) { kdebug("[OOM] No enough memory in memory pool %p\n", pool); goto out; }
/* * Split the chunk found and return the start part of the chunck * which can meet the required size. */ page = split_chunk(pool, order, page);
out: unlock(&pool->buddy_lock); return page; }
解析
重点可以看看伙伴系统是如何查找满足要求的空闲块的:
1 2 3 4 5 6 7 8 9 10 11 12
/* Search a chunk (with just enough size) in the free lists. */ for (cur_order = order; cur_order < BUDDY_MAX_ORDER; ++cur_order) { free_list = &(pool->free_lists[cur_order].free_list); if (!list_empty(free_list)) { /* Get a free memory chunck from the free list */ page = list_entry(free_list->next, struct page, node); list_del(&page->node); pool->free_lists[cur_order].nr_free -= 1; page->allocated = 1; break; } }
从查询要求提供的 order 开始,一级一级向上查找,如果没有则向上加一级,如果有则操作链表,取出这块空闲块,并同时设置空闲链表的相应参数,退出循环
BUG_ON(page->allocated == 0); /* Mark the chunk @page as free. */ page->allocated = 0; /* Merge the freed chunk. */ page = merge_chunk(pool, page);
/* Put the merged chunk into the its corresponding free list. */ order = page->order; free_list = &(pool->free_lists[order].free_list); list_add(&page->node, free_list); pool->free_lists[order].nr_free += 1;
unlock(&pool->buddy_lock); }
解析
get 还需要查询是否有空闲块,而 free 则简单多了——直接设置参数后 merge 即可!最后不要使用链表操作将这个块放进内存池的空闲链表里
/* * If the @chunk's order equals to the required order, * return this chunk. */ if (chunk->order == order) return chunk;
/* * If the current order is larger than the required order, * split the memory chunck into two halves. */ chunk->order -= 1;
buddy_chunk = get_buddy_chunk(pool, chunk); /* The buddy_chunk must exist since we are spliting a large chunk. */ if (buddy_chunk == NULL) { BUG("buddy_chunk must exist"); returnNULL; }
/* Set the metadata of the remaining buddy_chunk. */ buddy_chunk->order = chunk->order; buddy_chunk->allocated = 0;
/* Put the remaining buddy_chunk into its correspondint free list. */ free_list = &(pool->free_lists[buddy_chunk->order].free_list); list_add(&buddy_chunk->node, free_list); pool->free_lists[buddy_chunk->order].nr_free += 1;
/* Continue to split current chunk (@chunk). */ return split_chunk(pool, order, chunk); }
解析
注意该函数接受的参数: order 指的是最后要得到的内存块的 order,这一点也可以在上面申请内存的函数中对该函数的调用发现
函数整体上采用尾递归的设计,每次执行时先判断边界条件,随后再进行具体的单次分裂的操作
下面是对于其逻辑的具体分析:
flowchart TD
A[开始分裂] --> B{chunk->order == order?}
B -->|是| C[返回当前块]
B -->|否| D[chunk->order -= 1]
D --> E[获取伙伴块]
E --> F{伙伴块存在?}
F -->|否| G[报错返回 NULL]
F -->|是| H[设置伙伴块元数据]
H --> I[将伙伴块加入空闲链表]
I --> J[递归分裂当前块]
J --> B
graph TD
subgraph "初始状态 order=2 16KB"
A[16KB 块]
end
subgraph "第一次分裂 order=1"
B[8KB块] --- C[8KB伙伴块]
end
subgraph "第二次分裂 order=0"
D[4KB块] --- E[4KB伙伴块]
F[8KB块]
end
A --> B
A --> C
B --> D
B --> E
C --> F
style F fill:#f9f,stroke:#333
style E fill:#f9f,stroke:#333
/* The most recursion level of merge_chunk is decided by the macro of * BUDDY_MAX_ORDER. */ staticstruct page *merge_chunk(struct phys_mem_pool *pool, struct page *chunk) { structpage *buddy_chunk;
/* The @chunk has already been the largest one. */ if (chunk->order == (BUDDY_MAX_ORDER - 1)) { return chunk; }
/* Locate the buddy_chunk of @chunk. */ buddy_chunk = get_buddy_chunk(pool, chunk);
/* If the buddy_chunk does not exist, no further merge is required. */ if (buddy_chunk == NULL) return chunk;
/* The buddy_chunk is not free, no further merge is required. */ if (buddy_chunk->allocated == 1) return chunk;
/* The buddy_chunk is not free as a whole, no further merge is required. */ if (buddy_chunk->order != chunk->order) return chunk;
/* Remove the buddy_chunk from its current free list. */ list_del(&(buddy_chunk->node)); pool->free_lists[buddy_chunk->order].nr_free -= 1;
/* Merge the two buddies and get a larger chunk @chunk (order+1). */ buddy_chunk->order += 1; chunk->order += 1; if (chunk > buddy_chunk) chunk = buddy_chunk;
有了对分裂块过程的了解,那么合并块理解起来就更简单了:同样是基于尾递归的实现,每次执行时先判断当前块是否已经达到最大的阶数 or 它的伙伴已经不在了,然后再执行相应操作,最后递归处理
我们以一张示例图结束伙伴块之间的羁绊
flowchart TD
A[开始合并] --> B{是否最大 order?}
B -->|是| C[返回当前块]
B -->|否| D[获取伙伴块]
D --> E{伙伴块存在?}
E -->|否| C
E -->|是| F{伙伴块已分配?}
F -->|是| C
F -->|否| G{伙伴块 order 相同?}
G -->|否| C
G -->|是| H[从空闲链表移除伙伴块]
H --> I[增加两个块的 order]
I --> J[选择较小地址块]
J --> K[递归继续合并]
K --> A
注意这里判断伙伴块阶数相同的操作,实际上是看伙伴块是否依然作为一个整体空闲着存在,而不是已经裂开了
同样以 4KB——16KB 为例,介绍一次典型的合并过程
graph TD
subgraph "初始状态 order=0"
A[4KB 块] --- B[4KB 伙伴块]
C[4KB 块] --- D[4KB 伙伴块]
end
subgraph "第一次合并 order=1"
E[8KB块] --- F[8KB块]
end
subgraph "第二次合并 order=2"
G[16KB块]
end
A --> E
B --> E
C --> F
D --> F
E --> G
F --> G
style A fill:#f9f,stroke:#333
style B fill:#f9f,stroke:#333
style C fill:#f9f,stroke:#333
style D fill:#f9f,stroke:#333